
All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 11

CMSC 426

Principles of Computer Security

Stack Overflow Demo & Shellcode

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 2

Last Class We Covered

 Assembly review

 Cdecl calling convention

 In-depth explanation of stack buffer overflow exploits

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 3

Any Questions from Last Time?

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 4

Today’s Topics

 How the shellcode works

 Stack buffer overflow exploit demo (finally!)

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 5

Quick Note: Word Alignment

 Having things on the stack align along word boundaries is not

automatic when we’re causing a buffer overflow

 Words are four bytes (32 bits)

 Having the return address copies in our buffer overflow input

line up with the original return address needs to be managed

 We can control our shellcode and NOP sled sizes to ensure that the

final return address (and anything else) will be correctly aligned

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 6

Breaking Down the Shellcode

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 7

Shellcode

XOR EAX, EAX

PUSH EAX

PUSH 0x2F2F7368

PUSH 0x2F62696E

MOV EBX, ESP

PUSH EAX

PUSH EBX

MOV ECX, ESP

CDQ

MOV AL, 0xB

INT 0x80

Set up to put
“/bin//sh”
on the stack

Putting the arguments
for execve() in the
correct registers

System call

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 8

Building the string /bin/sh on the stack

 Executing the command /bin/sh will open a shell

 We want to put this string on the stack and then find a way to

execute it

 Actually going to build the string /bin//sh

 The second forward slash doesn’t do anything

 But it keeps the length of the string a multiple of 4

 This keeps the stack word aligned (very important!)

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 9

Building the string /bin/sh on the stack

 “/bin//sh” needs to be pushed onto the stack in reverse

 Why?

 Because the stack starts at higher addresses and grows down

 But the stack is “read” from the bottom up

1. Push NULL terminator (end of string)

2. Push //sh

3. Push /bin

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 10

Shellcode: Line by Line

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 11

XOR EAX, EAX

 Want to put a NULL terminator into

EAX so we can use it later

 Can’t use MOV EAX, 0, because

the opcode contains NULL bytes

 Workaround: anything XORed with

itself is 0

Register Value

EAX

EBX

ECX

EDX

ESP

00 00 00 00

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 12

PUSH EAX

 Need to add a NULL

pointer to the stack

 We’ll want it here later

 PUSH EAX

 SUB ESP, 4

 MOV [ESP], EAX

00 00 00 00
0x2AF0

Register Value

EAX

EBX

ECX

EDX

ESP

00 00 00 00

00 00 2A F0

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 13

PUSH 0x2F2F7368

 Pushing the second half of the string
“/bin//sh” onto the stack

 0x2F2F7368 is ASCII for “//sh”
00 00 00 00

0x2AF0

0x2AEC

“//sh”

EAX

EBX

ECX

EDX

ESP

00 00 00 00

00 00 2A F000 00 2A EC

Register Value

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 14

PUSH 0x2F62696E

 Pushing the first half of the string
“/bin//sh” onto the stack

 0x2F2F7368 is ASCII for “/bin”
00 00 00 00

0x2AF0

0x2AEC

“//sh”

EAX

EBX

ECX

EDX

ESP

00 00 00 00

00 00 2A EC00 00 2A E8

Register Value

“/bin”
0X2AE8

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 15

Side Note: Executing /bin//sh

 Now that we’ve built the string /bin//sh on the stack, we

need to find a way to execute it

 Going to use the execve() system call

int execve(const char *filename,

char *const argv[],

char *const envp[]);

 We will be putting each argument into a separate register

EBX

ECX

EDX

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 16

(Unimportant) Side Note: const

 What is the difference between

const char* param

and

char* const param

 The first is a pointer to a constant character

 Cannot change the value, but can make it point elsewhere

 The second is a constant pointer to a non-constant character

 Cannot change where it points to, but can change the value there

 (Don’t worry about it, it doesn’t matter)

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 17

The execve() arguments: filename

 A string that contains the name of the “file”

 (Really a pointer to a character array, but same difference)

 For our purposes, the “file” is the command /bin//sh

 Need EBX to point to the string “/bin//sh”

 Already built on the stack earlier

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 18

The execve() arguments: argv

 An array of string (char*) arguments used by the program

being executed

 Last element of the array must be a NULL pointer

 The first element of the array should be

the name of the program being executed

 Need ECX to point to an array ["/bin//sh", NULL]

 How handy, we’ve already built the pieces of this on the stack

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 19

The execve() arguments: envp

 An array of string (char*) arguments

 Contains any necessary environment info for the program

 Last element of the array must be a NULL pointer

 There is no environment information for this program

 Just need to build an array of [NULL] on the stack

 Once done, store a pointer to it in EDX

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 20

Register ValueHow We Left the Stack

00 00 00 00
0x2AF0

0x2AEC

“//sh”

EAX

EBX

ECX

EDX

ESP

00 00 00 00

00 00 2A E8

“/bin”
0X2AE8

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 21

Register ValueMOV EBX, ESP

 ESP is already pointing to

the string “/bin//sh”

 Because we set it up that way

 Make EBX point to it as well

 (That was easy)

00 00 00 00
0x2AF0

0x2AEC

“//sh”

EAX

EBX

ECX

EDX

ESP

00 00 00 00

00 00 2A E8

00 00 2A E8

“/bin”
0X2AE8

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 22

PUSH EAX

 We have to build the array
["/bin//sh", NULL]

in reverse order on the stack

 Because it grows down, but is read up

 Pushing a NULL terminator first

 We already have one in EAX

00 00 00 00
0x2AF0

0x2AEC

“//sh”

EAX

EBX

ECX

EDX

ESP

00 00 00 00

00 00 2A E8

00 00 2A E800 00 2A E4

Register Value

“/bin”
0X2AE8

00 00 00 00
0X2AE4

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 23

PUSH EBX

 We have to build the array
["/bin//sh", NULL]

in reverse order on the stack

 Because it grows down, but is read up

 Next push a pointer to
“/bin//sh” onto the stack

 We already have one in EBX

00 00 00 00
0x2AF0

0x2AEC

“//sh”

EAX

EBX

ECX

EDX

ESP

00 00 00 00

00 00 2A E8

00 00 2A E400 00 2A E0

Register Value

“/bin”
0X2AE8

00 00 00 00
0X2AE4

00 00 2A E8
0X2AE0

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 24

MOV ECX, ESP

 Array ["/bin//sh", NULL] is

built on the stack

 Now need to make
register ECX point to it

 ESP is already pointing to it

 Make ECX point to it as well

00 00 00 00
0x2AF0

0x2AEC

“//sh”

“/bin”
0X2AE8

00 00 00 00
0X2AE4

00 00 2A E8
0X2AE0

Register Value

EAX

EBX

ECX

EDX

ESP

00 00 00 00

00 00 2A E8

00 00 2A E0

00 00 2A E0

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 25

CDQ

 Need to make register EDX point to

an array [NULL]

 Can’t use MOV EDX, 0

 Could use MOV EDX, EAX

 Opcode for CDQ is smaller

 Happens to make the shellcode align

with word size (multiples of four)

 Extends sign bit of EAX into EDX,

which zeroes EDX

00 00 00 00
0x2AF0

0x2AEC

“//sh”

“/bin”
0X2AE8

00 00 00 00
0X2AE4

00 00 2A E8
0X2AE0

Register Value

EAX

EBX

ECX

EDX

ESP

00 00 00 00

00 00 2A E8

00 00 2A E0

00 00 00 00

00 00 2A E0

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 26

MOV AL, 0xB

 Moving the code for the

execve() system call

into the lowest byte of EAX

 0xB is the code because it is

 AL means lowest byte in

the EAX register

 L means lowest byte

 H means second lowest byte

 X means lowest two bytes

00 00 00 00
0x2AF0

0x2AEC

“//sh”

“/bin”
0X2AE8

00 00 00 00
0X2AE4

00 00 2A E8
0X2AE0

EAX

EBX

ECX

EDX

ESP

00 00 2A E8

00 00 2A E0

00 00 00 00

00 00 2A E0

00 00 00 0000 00 00 0B

Register Value

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 27

INT 0X80

 Calling the interrupt with the
code 0x80 means that we

want to make a system call

 Interrupt whatever else was

going on, and acts based on the

values we gave the registers

00 00 00 00
0x2AF0

0x2AEC

“//sh”

“/bin”
0X2AE8

00 00 00 00
0X2AE4

00 00 2A E8
0X2AE0

EAX

EBX

ECX

EDX

ESP

00 00 2A E8

00 00 2A E0

00 00 00 00

00 00 2A E0

00 00 00 0B

Register Value

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 28

Summary of Shellcode’s Execution

 EAX  0xB, the code for the execve() system call

 EBX  "/bin//sh", the command to open a shell

 ECX  ["/bin//sh", NULL], an array of arguments

 EDX  [NULL], an array of environment info

 We’ve got a shell!

All materials copyright UMBC, Dr. Katherine Gibson, and RJ Joyce unless otherwise noted 29

